

Game Theory Course: Jackson, Leyton-Brown & Shoham

Hardness beyond $2\times 2~{\rm games}$ $_{\rm Algorithms}$

Two example algorithms for finding NE

- LCP (Linear Complementarity) formulation
 - [Lemke-Howson '64]
- Support Enumeration Method
 - [Porter et al. '04]

Early History (skipped in Basic lecture)

- **1928 von Neumann**: existence of Equilibrium in 2-player, zero-sum games
 - proof uses Brouwer's fixed point theorem;
 - led directly to algorithms:
 - Danzig '57: equivalent to LP duality
 - Khachiyan'79: polynomial-time solvable

Early History (skipped in Basic lecture)

- **1928 von Neumann**: existence of Equilibrium in 2-player, zero-sum games
 - proof uses Brouwer's fixed point theorem;
 - led directly to algorithms:
 - Danzig '57: equivalent to LP duality
 - Khachiyan'79: polynomial-time solvable
- **1950 Nash**: existence of Equilibrium in multiplayer, general-sum games
 - proof also uses Brouwer's fixed point theorem;
 - intense effort on equilibrium algorithms:
 - Kuhn '61, Mangasarian '64, Lemke-Howson '64, Rosenmüller '71, Wilson '71, Scarf '67, Eaves '72, Laan-Talman '79, Porter et al. '04, ...
 - ... all exponential in the worst case

The Lemke-Howson Algorithm (skipped in Basic lecture)

• LCP (Linear Complementarity) formulation

$$\begin{split} \sum_{k \in A_2} u_1(a_1^j, a_2^k) \cdot s_2^k + r_1^j &= U_1^* & \forall j \in A_1 \\ \sum_{j \in A_1} u_2(a_1^j, a_2^k) \cdot s_1^j + r_2^k &= U_2^* & \forall k \in A_2 \\ \sum_{j \in A_1} s_1^j &= 1, \quad \sum_{k \in A_2} s_2^k &= 1 \\ s_1^j &\geq 0, \ s_2^k &\geq 0 & \forall j \in A_1, \ \forall k \in A_2 \\ r_1^j &\geq 0, \ r_2^k &\geq 0 & \forall j \in A_1, \ \forall k \in A_2 \\ r_1^j \cdot s_1^j &= 0, \ r_2^j \cdot s_2^j &= 0 & \forall j \in A_1, \ \forall k \in A_2 \end{split}$$

Support Enumeration Method: Porter et al. 2004 (skipped in Basic lecture)

• Step 1: Finding a NE with a specific support

$$\sum_{a_{-1}\in\sigma_{-i}} p(a_{-i})u_i(a_i, a_{-i}) = v_i \qquad \forall i \in \{1, 2\}, a_i \in \sigma_i$$
$$\sum_{a_{-1}\in\sigma_{-i}} p(a_{-i})u_i(a_i, a_{-i}) \leq v_i \qquad \forall i \in \{1, 2\}, a_i \notin \sigma_i$$
$$p_i(a_i) \geq 0 \qquad \forall i \in \{1, 2\}, a_i \in \sigma_i$$
$$p_i(a_i) = 0 \qquad \forall i \in \{1, 2\}, a_i \notin \sigma_i$$
$$\sum_{a_i \in \sigma_i} p_i(a_i) = 1 \qquad \forall i \in \{1, 2\}$$

Support Enumeration Method: Porter et al. 2004 (skipped in Basic lecture)

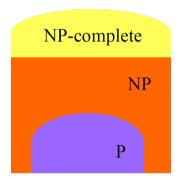
• Step 2: Smart heuristic search through all sets of support

From Algorithms to Complexity Analysis (skipped in Basic lecture)

- These algorithms have exponential worst-case time complexity.
- So do all known others.
- Can we do better?

From Algorithms to Complexity Analysis (skipped in Basic lecture)

• Reminder of a (small part) of the complexity hierarchy.



From Algorithms to Complexity Analysis (skipped in Basic lecture)

So, is it NP-complete to find a Nash equilibrium?

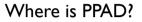
- Strictly speaking, no, since a solution is guaranteed to exist...
- However, it is NP-complete to find a "tiny" bit more info than a Nash equilibrium; e.g., the following are NP-complete:
 - 1. (Uniqueness) Given a game G, does there exist a unique equilibrium in G?
 - 2. (Pareto optimality) Given a game G, does there exist a strictly Pareto efficient equilibrium in G?
 - 3. (Guaranteed payoff) Given a game G and a value v, does there exist an equilibrium in G in which some player i obtains an expected payoff of at least v?
 - 4. (Guaranteed social welfare) Given a game G, does there exist an equilibrium in which the sum of agents' utilities is at least k?
 - 5. (Action inclusion) Given a game G and an action $a_i \in A_i$ for some player $i \in N$, does there exist an equilibrium of G in which player i plays action a_i with strictly positive probability?
 - 6. (Action exclusion) Given a game G and an action $a_i \in A_i$ for some player $i \in N$, does there exist an equilibrium of G in which player i plays action a_i with zero probability?

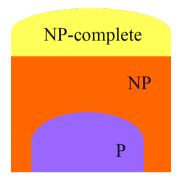
From Algorithms to Complexity Analysis

Still, finding even a single Nash equilibrium seems hard; how do we capture that?

- Enter PPAD ("Polynomial Parity Arguments on Directed graphs")
 - (Papadimitriou '94)
- At a high level:
 - FNP problems are constructive versions of NP problems (F stands for "Functional")
 - TFNP is a subclass of FNP for problems for which a solution is guaranteed to exist (T stands for "Total")
 - PPAD is a subclass of TFNP where the proofs are based on parity arguments in directed graphs

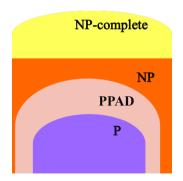
From Algorithms to Complexity Analysis





From Algorithms to Complexity Analysis

Where is PPAD?



From Algorithms to Complexity Analysis

The Complexity of the Nash Equilibrium

Theorem: Computing a Nash equilibrium is PPAD-complete...

- for games with ≥4 players;
 [Daskalakis, Goldberg, Papadimitriou '05]
- for games with 3 players; [Chen, Deng '05] & [Daskalakis, Papadimitriou '05]
- for games with 2 players. [Chen, Deng '06]